3,283 research outputs found

    Accuracy Assessment for AG500, Electromagnetic Articulograph

    Get PDF
    Purpose: The goal of this article was to evaluate the accuracy and reliability of the AG500 (Carstens Medizinelectronik, Lenglern, Germany), an electromagnetic device developed recently to register articulatory movements in three dimensions. This technology seems to have unprecedented capabilities to provide rich information about time-varying positions of articulators. However, strengths and weaknesses of the system need to be better understood before the device is used for speech research. Method: Evaluations of the sensor positions over time were obtained during (a) movements of the calibration device, (b) manual movements of sensors in a cartridge within the recording field of the cube, and (c) various speech tasks. Results: Results showed a median error to be under 0.5 mm across different types of recordings. The maximum error often ranged between 1 and 2 mm. The magnitude of error depended somewhat on the task but largely on the location of the sensors within the recording region of the cube. Conclusion: The performance of the system was judged as adequate for speech movement acquisition, provided that specific steps are taken for minimizing error during recording and for validating the quality of recorded data

    Vowel Recognition from Articulatory Position Time-Series Data

    Get PDF
    A new approach of recognizing vowels from articulatory position time-series data was proposed and tested in this paper. This approach directly mapped articulatory position time-series data to vowels without extracting articulatory features such as mouth opening. The input time-series data were time-normalized and sampled to fixed-width vectors of articulatory positions. Three commonly used classifiers, Neural Network, Support Vector Machine and Decision Tree were used and their performances were compared on the vectors. A single speaker dataset of eight major English vowels acquired using Electromagnetic Articulograph (EMA) AG500 was used. Recognition rate using cross validation ranged from 76.07% to 91.32% for the three classifiers. In addition, the trained decision trees were consistent with articulatory features commonly used to descriptively distinguish vowels in classical phonetics. The findings are intended to improve the accuracy and response time of a real-time articulatory-to-acoustics synthesizer

    A longitudinal study of infants' early speech production and later letter identification

    Get PDF
    Letter identification is an early metric of reading ability that can be reliability tested before a child can decode words. We test the hypothesis that early speech production will be associated with children's later letter identification. We examined longitudinal growth in early speech production in 9 typically developing children across eight occasions, every 3 months from 9 months to 30 months. At each occasion, participants and their caregivers engaged in a speech sample in a research lab. This speech sample was transcribed for a variety of vocalizations, which were then transformed to calculate consonant-vowel ratio. Consonantvowel ratio is a measure of phonetic complexity in speech production. At the age of 72 months, children's letter knowledge was measured. A multilevel model including fixed quadratic age change and a random intercept was estimated using letter identification as a predictor of the growth in early speech production from 9±30 months, measured by the outcome of consonant-vowel ratio. Results revealed that the relation between early speech production and letter identification differed over time. For each additional letter that a child identified, their consonant-vowel ratio at the age of 9 months increased. As such, these results confirmed our hypothesis: more robust early speech production is associated with more accurate letter identification.(R01 DC006463

    Influence of association state and DNA binding on the O2-reactivity of [4Fe-4S] fumarate and nitrate reduction (FNR) regulator

    Get PDF
    The fumarate and nitrate reduction (FNR) regulator is the master switch for the transition between anaerobic and aerobic respiration in Escherichia coli. Reaction of dimeric [4Fe-4S] FNR with O2 results in conversion of the cluster into a [2Fe-2S] form, via a [3Fe-4S] intermediate, leading to the loss of DNA binding through dissociation of the dimer into monomers. In the present paper, we report studies of two previously identified variants of FNR, D154A and I151A, in which the form of the cluster is decoupled from the association state. In vivo studies of permanently dimeric D154A FNR show that DNA binding does not affect the rate of cluster incorporation into the apoprotein or the rate of O2-mediated cluster loss. In vitro studies show that O2-mediated cluster conversion for D154A and the permanent monomer I151A FNR is the same as in wild-type FNR, but with altered kinetics. Decoupling leads to an increase in the rate of the [3Fe-4S]1+ into [2Fe-2S]2+ conversion step, consistent with the suggestion that this step drives association state changes in the wild-type protein. We have also shown that DNA-bound FNR reacts more rapidly with O2 than FNR free in solution, implying that transcriptionally active FNR is the preferred target for reaction with O2

    Quaternionic and Octonionic Spinors. A Classification

    Get PDF
    Quaternionic and octonionic realizations of Clifford algebras and spinors are classified and explicitly constructed in terms of recursive formulas. The most general free dynamics in arbitrary signature space-times for both quaternionic and octonionic spinors is presented. In the octonionic case we further provide a systematic list of results and tables expressing, e.g., the relations of the octonionic Clifford algebras with the G2G_2 cosets over the Lorentz algebras, the identities satisfied by the higher-rank antisymmetric octonionic tensors and so on. Applications of these results range from the classification of octonionic generalized supersymmetries, the construction of octonionic superstrings, as well as the investigations concerning the recently discovered octonionic MM-superalgebra and its superconformal extension.Comment: 24 pages, LaTe

    Lithium in strong magnetic fields

    Full text link
    The electronic structure of the lithium atom in a strong magnetic field 0 <= gamma <= 10 is investigated. Our computational approach is a full configuration interaction method based on a set of anisotropic Gaussian orbitals that is nonlinearly optimized for each field strength. Accurate results for the total energies and one-electron ionization energies for the ground and several excited states for each of the symmetries ^20^+, ^2(-1)^+, ^4(-1)^+, ^4(-1)^-, ^2(-2)^+, ^4(-2)^+, 4(3)+^4(-3)^{+} are presented. The behaviour of these energies as a function of the field strength is discussed and classified. Transition wave lengths for linear and circular polarized transitions are presented as well.Comment: 12 pages, 13 figures, accepted for publication in Phys. Rev.

    Evidence for the multiple hits genetic theory for inherited language impairment: a case study

    Get PDF
    Communication disorders have complex genetic origins, with constellations of relevant gene markers that vary across individuals. Some genetic variants are present in healthy individuals as well as those affected by developmental disorders. Growing evidence suggests that some variants may increase susceptibility to these disorders in the presence of other pathogenic gene mutations. In the current study, we describe eight children with specific language impairment and four of these children had a copy number variant in one of these potential susceptibility regions on chromosome 15. Three of these four children also had variants in other genes previously associated with language impairment. Our data support the theory that 15q11.2 is a susceptibility region for developmental disorders, specifically language impairment.University of Nebraska. Health Research ConsortiumBarkley Memorial Trus

    On the Energy-Momentum Tensor of the Scalar Field in Scalar--Tensor Theories of Gravity

    Get PDF
    We study the dynamical description of gravity, the appropriate definition of the scalar field energy-momentum tensor, and the interrelation between them in scalar-tensor theories of gravity. We show that the quantity which one would naively identify as the energy-momentum tensor of the scalar field is not appropriate because it is spoiled by a part of the dynamical description of gravity. A new connection can be defined in terms of which the full dynamical description of gravity is explicit, and the correct scalar field energy-momentum tensor can be immediately identified. Certain inequalities must be imposed on the two free functions (the coupling function and the potential) that define a particular scalar-tensor theory, to ensure that the scalar field energy density never becomes negative. The correct dynamical description leads naturally to the Einstein frame formulation of scalar-tensor gravity which is also studied in detail.Comment: Submitted to Phys. Rev D15, 10 pages. Uses ReVTeX macro
    corecore